Package: rDecode 0.1.0

rDecode: Descent-Based Calibrated Optimal Direct Estimation

Algorithms for solving a self-calibrated l1-regularized quadratic programming problem without parameter tuning. The algorithm, called DECODE, can handle high-dimensional data without cross-validation. It is found useful in high dimensional portfolio selection (see Pun (2018) <https://ssrn.com/abstract=3179569>) and large precision matrix estimation and sparse linear discriminant analysis (see Pun and Hadimaja (2019) <https://ssrn.com/abstract=3422590>).

Authors:Chi Seng Pun, Matthew Zakharia Hadimaja

rDecode_0.1.0.tar.gz
rDecode_0.1.0.zip(r-4.5)rDecode_0.1.0.zip(r-4.4)rDecode_0.1.0.zip(r-4.3)
rDecode_0.1.0.tgz(r-4.5-any)rDecode_0.1.0.tgz(r-4.4-any)rDecode_0.1.0.tgz(r-4.3-any)
rDecode_0.1.0.tar.gz(r-4.5-noble)rDecode_0.1.0.tar.gz(r-4.4-noble)
rDecode_0.1.0.tgz(r-4.4-emscripten)rDecode_0.1.0.tgz(r-4.3-emscripten)
rDecode.pdf |rDecode.html
rDecode/json (API)

# Install 'rDecode' in R:
install.packages('rDecode', repos = c('https://cspun.r-universe.dev', 'https://cloud.r-project.org'))
Datasets:
  • lung.test - Lung cancer test data set from Gordon et al.
  • lung.train - Lung cancer training data set from Gordon et al.

On CRAN:

Conda:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 117 downloads 3 exports 0 dependencies

Last updated 5 years agofrom:fd4ff30abc. Checks:9 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 17 2025
R-4.5-winOKMar 17 2025
R-4.5-macOKMar 17 2025
R-4.5-linuxOKMar 17 2025
R-4.4-winOKMar 17 2025
R-4.4-macOKMar 17 2025
R-4.4-linuxOKMar 17 2025
R-4.3-winOKMar 17 2025
R-4.3-macOKMar 17 2025

Exports:decodedecodeLDAdecodePM

Dependencies: